Crystal structures and magnetic properties of novel rare-earth copper sulfides, $EuRCuS_3$ (R = Y, Gd–Lu)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 5503

(http://iopscience.iop.org/0953-8984/16/30/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 16:13

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 16 (2004) 5503-5518

PII: S0953-8984(04)79766-0

Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS₃ (R = Y, Gd–Lu)

Makoto Wakeshima, Fumito Furuuchi and Yukio Hinatsu

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received 22 April 2004 Published 16 July 2004 Online at stacks.iop.org/JPhysCM/16/5503 doi:10.1088/0953-8984/16/30/012

Abstract

Novel quaternary rare-earth copper sulfides $EuRCuS_3$ (R = Y, Gd–Lu excluding Ho, Er) have been investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, and specific heat measurements. These compounds crystallize in the Eu_2CuS_3 -type structure for R = Y, Gd–Dy and in the KZrCuS₃-type structure for R = Tm–Lu. Both EuYCuS₃ and EuLuCuS₃ show a ferromagnetic transition and the other EuRCuS₃ compounds show a ferrimagnetic transition at around 5.0 K.

1. Introduction

Ternary and quaternary copper sulfides containing rare-earth ions frequently crystallize in low dimensional structures and display interesting physical properties [1]. Ternary europium copper sulfide Eu₂CuS₃ has been reported to crystallize in the orthorhombic structure with space group *Pnma* [2]. The schematic structure of Eu₂CuS₃ is illustrated in figure 1(a). In this structure, the Eu ions occupy two crystallographically independent sites. The Eu(1) ion is coordinated by six sulfur ions and the Eu(1)S₆ octahedra share corners along the *a*-axis and edges along the *b*-axis. The Eu(1) S₆ octahedra and CuS₄ tetrahedra form a CuEu(1)S₃ layer perpendicular to the *c*-axis. The Eu(2) ions are coordinated by seven sulfur ions between the CuEu(1)S₃ layers, forming Eu(2)S₇ monocapped trigonal prisms. This compound has the formal oxidation state Eu²⁺Eu³⁺Cu⁺S₃²⁻ and the Eu²⁺ and Eu³⁺ ions are supposed to occupy the Eu(2) and Eu(1) sites, respectively, from the Eu–S distances [2].

Recently, we have carried out magnetic susceptibility, specific heat, and ¹⁵¹Eu Mössbauer spectroscopy measurements for Eu₂CuS₃ [3]. Its ¹⁵¹Eu Mössbauer spectra reveal that the Eu²⁺ and Eu³⁺ ions occupy the Eu(2) and Eu(1) sites independently below room temperature. Furthermore, Eu₂CuS₃ shows a ferromagnetic transition at 3.4 K due to magnetic interactions among the Eu²⁺ ions with the ⁸S_{7/2} ground state.

Because the Eu^{3+} ion has a non-magnetic ground state (⁷F₀), its magnetic contribution to the magnetic behaviour of Eu_2CuS_3 is negligible at low temperatures. In order to investigate

Figure 1. Polyhedral representations of the Eu₂CuS₃-type (a) and KZrCuS₃-type (b) structures.

the magnetic behaviour of trivalent rare-earth ions other than the Eu^{3+} ion, we have attempted to synthesize new quaternary rare-earth copper sulfides $EuRCuS_3$ (R = rare earths) in which half of the Eu sites in the Eu_2CuS_3 are replaced by rare-earth ions. In this paper, we will report the results of the magnetic susceptibility, magnetization, and specific heat measurements of $EuRCuS_3$.

2. Experimental details

Quaternary rare-earth copper sulfides, EuRCuS₃, were synthesized by a solid-state reaction. Rare-earth sesquioxide (R_2O_3) and copper oxide (CuO) were used as starting materials. The stoichiometric mixture of the starting materials was heated in a graphite boat at 1170–1320 K in a flow of mixed CS₂ and N₂ gas which was obtained by bubbling the N₂ gas through liquid CS₂ at room temperature. The reaction was carried out at the same temperature for 18–36 h, with several intervals of regrinding.

Powder x-ray diffraction measurements were performed with Cu K α radiation on a Rigaku MultiFlex diffractometer equipped with a curved graphite monochromator. Intensity data were collected by step scanning in the range 10°–120° at intervals of 0.02°. The structure and lattice parameters were refined with a Rietveld program, RIETAN 2000 [4].

Magnetic susceptibility measurements were performed with a SQUID magnetometer (Quantum Design MPMS model) from 1.8 to 300 K. Susceptibility versus temperature curves for each sample were measured under both the ZFC (zero-field-cooled) and FC (field-cooled) conditions. The former were measured on heating the sample to 300 K after zero-field cooling to 1.8 K, applying a field of 0.1 T. The latter were measured on cooling from 300 to 1.8 K at 0.1 T. Additionally, around the magnetic transition temperatures, the magnetic susceptibility measurements were also performed in the much smaller magnetic field of 5 mT. The field

$f_i(x)$ / $\sum_i w_i y_i$ · and $K_i = \sum_i r_k(0) - r_k(0) / \sum_i r_k(0)$.)							
R	Туре	a (Å)	b (Å)	c (Å)	$R_{\rm wp}~(\%)$	R_I (%)	
Y	Eu2CuS3	10.1830(3)	3.9260(1)	12.8482(4)	6.84	2.20	
Eu	Eu_2CuS_3	10.3619(3)	3.9596(1)	12.9224(4)	7.90	2.59	
Gd	Eu_2CuS_3	10.3187(3)	3.9487(1)	12.8319(4)	7.35	1.94	
Tb	Eu_2CuS_3	10.2495(3)	3.9366(1)	12.8362(4)	6.86	2.32	
Dy	Eu_2CuS_3	10.1904(3)	3.9267(1)	12.8471(4)	7.20	1.80	
Tm	KZrCuS3	3.9042(1)	12.8498(3)	10.0401(2)	6.86	2.19	
Yb	KZrCuS3	3.8965(1)	12.8451(3)	10.0028(2)	7.30	2.28	
Lu	KZrCuS3	3.8915(1)	12.8470(3)	9.9840(2)	8.68	2.73	

Table 1. Lattice parameters and *R* factors of EuRCuS₃. (Note: $R_{wp} = [\sum_i w_i(y_i - f_i(x))^2 / \sum_i w_i y_i^2]^{1/2}$ and $R_I = \sum |I_k(o) - I_k(c)| / \sum I_k(o)$.)

dependence of the magnetization was measured at 1.8–10 K by changing the applied magnetic field between 0 and 5 T.

The specific heat measurement was carried out using a relaxation technique supplied by commercial specific heat measurement system equipped with the ³He option (Quantum Design, PPMS) in the temperature range from 0.4 to 300 K. The sample in the form of a pellet ($\sim 10 \text{ mg}$) was mounted on an aluminium plate with apiezon grease for better thermal contact.

3. Results and discussion

3.1. Crystal structure

The EuRCuS₃ (R = Y, Sm-Lu) phase was identified from the x-ray diffraction (XRD) profiles. However, the samples for R = Sm, Ho and Er contain more than 3 wt% of (Eu, R)₂O₂S as an impurity. Attempts to synthesize the Nd compound were unsuccessful and led to multiphasic samples without the EuNdCuS₃ phase. Figures 2(a) and (b) show the XRD profiles for $EuDyCuS_3$ and $EuTmCuS_3$, respectively. The profile for $EuDyCuS_3$ is indexed with respect to an orthorhombic Eu_2CuS_3 -type cell with the space group *Pnma*, while the *hkl* reflections with odd (h + l) disappear in the profile of EuTmCuS₃. The Yb and Lu compounds also show similar XRD profiles to EuTmCuS₃. These results indicate that the EuRCuS₃ compounds containing small R ions (R = Tm, Yb, Lu) crystallize in the B base-centred lattice. The BaRMQ₃ (R = rare earths; M = Cu, Ag, Au; Q = S, Se, Te) compounds transform from the Eu₂CuS₃-type structure (space group Pnma) to the KZrCuS₃-type structure (space group Cmcm) depending on the size of the R ion [5–7]. The space group, Bbmm(Cmcm), for the B base-centred cell is a supergroup of *Pnma*, and all the Bragg reflections for the EuRCuS₃ compounds with R = Tm, Yb, Lu are indexed with respect to the orthorhombic KZrCuS₃type cell with the space group *Cmcm*. For all the EuRCuS₃ compounds except for those with R = Sm, Ho, and Er, the crystallographic parameters were refined by the Rietveld method. The calculated XRD profiles are in good agreement with the observed ones ($R_{wp} = 7.20\%$, $R_I = 1.80\%$ for EuDyCuS₃ and $R_{wp} = 6.86\%$, $R_I = 2.19\%$ for EuTmCuS₃) as shown in figure 2. The lattice parameters and the positional parameters are listed in tables 1 and 2, respectively.

Figure 1(b) illustrates the crystal structure of KZrCuS₃-type EuRCuS₃. The schematic features of the KZrCuS₃-type structure are similar to those of the Eu₂CuS₃-type structure. The distorted RS₆ octahedra share edges along the *b*-axis and share corners along the *c*-axis, forming two-dimensional sheets in the b-c plane. The CuS₄ tetrahedra share corners along the *c*-axis and share their edges with the RS₆ octahedra. However, each Eu ion is coordinated

Figure 2. Powder x-ray diffraction patterns and Rietveld refinements for $EuDyCuS_3$ (a) and $EuTmCuS_3$ (b). The bottom trace is a plot of the difference between the observed (cross markers) and calculated (solid curve) intensities. All allowed Bragg reflections are shown by vertical lines.

by six sulfur atoms and the EuS_6 prisms share faces, forming one-dimensional chains along the *c*-axis, while each Eu(2) ion in the Eu_2CuS_3 -type structure is coordinated by seven sulfur ions, forming $Eu(2)S_7$ monocapped trigonal prisms.

ions, forming Eu(2)S₇ monocapped trigonal prisms. Figure 3 shows the difference, $\Delta/\% = \frac{l(R)-l(Eu)}{l(Eu)} \times 100 \ (l(R)$ is the lattice parameter of EuRCuS₃), between the lattice parameters of Eu₂CuS₃ (a = 10.3602(3) Å, b = 3.9589(1) Å, c = 12.8202(3) Å) and EuRCuS₃ against the ionic radius of the six-coordinated R³⁺ ion. The lattice parameters, a_{Cmcm} , b_{Cmcm} , and c_{Cmcm} , for the KZrCuS₃-type structure correspond to b_{Pnma} , c_{Pnma} , and a_{Pnma} for the Eu₂CuS₃-type structure, respectively. No discontinuous change of lattice parameters with the R³⁺ ionic radius is observed, although the symmetry of

Figure 3. The difference, Δ (%), in lattice parameters between Eu₂CuS₃ and EuRCuS₃ against the ionic radius of the six-coordinated R³⁺ ion (see the text).

Table 2. Positional parameters for EuDyCuS₃ and EuTmCuS₃.

	Site	x	у	Z.	$B~({\rm \AA}^2)$
		EuDyO	CuS ₃ SC	5: Pnma	
Eu	4c	0.7713(2)	1/4	0.0018(1)	0.74(8)
Dy	4c	0.0129(2)	1/4	0.7423(1)	0.52(8)
Cu	4c	0.2378(4)	1/4	0.2224(2)	1.06(10)
S(1)	4c	0.0511(6)	1/4	0.1140(5)	0.51(17)
S(2)	4c	0.4146(6)	1/4	0.1074(5)	0.44(17)
S(3)	4c	0.2607(7)	1/4	0.8278(4)	0.42(15)
		EuTm	CuS ₃ SC	B: Cmcm	
Eu	4c	0	0.7480(1	l) 1/4	0.97(8)
Tm	4a	0	0	0	0.35(7)
Cu	4c	0	0.4711(1	l) 1/4	1.02(9)
S(1)	8f	0	0.3612(3	3) 0.0669(3)	0.66(10)
S(2)	4c	0	0.0779(4	4) 1/4	0.85(14)

the crystal structures changes between the Y and Tm compounds. With decreasing R^{3+} ionic radius, a_{Pnma} (c_{Cmcm}) and b_{Pnma} (a_{Cmcm}) decrease, but c_{Pnma} (b_{Cmcm}) increases slightly. This tendency has also been observed in the lattice parameters for other isomorphic compounds, BaRMQ₃ (M = Cu, Ag, Au; Q = S, Se, Te) and CsRMSe₃ (M = Zn, Cd, Hg) [5–7].

Selected interatomic distances between cation and sulfide ions are plotted in figure 4. The coordination polyhedra of the R ions in the Eu₂CuS₃-type and KZrCuS₃-type structures are similar, with six sulfur neighbours forming distorted octahedra. The Cu ions have four sulfur neighbours forming distorted tetrahedra in both the Eu₂CuS₃-type and KZrCuS₃-type structures. The R–S distances decrease monotonically with decreasing R³⁺ ionic radius, while the Cu–S distances are almost constant (2.32–2.40 Å). On the other hand, the Eu–S interatomic distances show a discontinuous change between the Y and Tm compounds, which is due to the transformation from the Eu₂CuS₃-type to the KZrCuS₃-type structure. Sulfur coordinations

Figure 4. Interatomic distances, d(Cu-S), d(R-S), and d(Eu-S), for EuRCuS₃.

Figure 5. The coordination of the Eu^{2+} ion in the $Eu_2CuS_3\mbox{-type}$ and $KZrCuS_3\mbox{-type}$ structures.

around the Eu ion in the EuRCuS₃ compounds are illustrated in figure 5. For the Eu₂CuS₃-type structure, seven Eu–S distances (Eu–S(1) × 1, Eu–S(1) × 2, Eu–S(2) × 2, and Eu–S(3) × 2) are shorter than 3.2 Å, but one Eu–S(2) distance is remarkably long (>3.8 Å). With decreasing R^{3+} ionic radius, one Eu–S(1) distance gradually becomes long, and it shows a discontinuous increase between the Y and Tm compounds. Consequently, in the KZrCuS₃-type structure, the Eu ions have six closer sulfur neighbours (Eu–S(1) × 4, Eu–S(2) × 2) and two additional S(1) ions (>3.4 Å). The eighth sulfide ion in the Eu₂CuS₃-type structure and the seventh (eighth) sulfide ions in the KZrCuS₃-type structure can only marginally be counted as neighbours of the Eu ions.

3.2. Magnetic property

3.2.1. EuYCuS₃ and EuLuCuS₃. The insets of figures 6(a) and (b) show the reciprocal magnetic susceptibilities (χ^{-1}) of EuYCuS₃ and EuLuCuS₃ as a function of temperature in the magnetic field of 0.1 T. Only the Eu²⁺ ion is magnetic in these compounds. Thus, the molar susceptibility is given by

$$\chi = \chi (\mathrm{Eu}^{2+}) + \chi_{\mathrm{TIP}},\tag{1}$$

where χ_{TIP} is the temperature-independent term containing the diamagnetic term. For the ground ${}^{8}S_{7/2}$ state of the Eu²⁺ ion, the orbital angular momentum vanishes, and so the crystal field does not affect the susceptibility of the Eu²⁺ ion. Consequently, the magnetic susceptibility of Eu²⁺ is represented by $N_A \mu_{\text{eff}} (\text{Eu}^{2+})^2 / 3k_B (T - \Theta_W)$, where k_B is Boltzmann's constant and μ_{eff} is the effective magnetic moment. The values of μ_{eff} and Θ_W for Eu²⁺ were determined as 7.77(3) μ_B and +7.1(1) K for EuYCuS₃, and 7.82 μ_B and +6.1 K for EuLuCuS₃, respectively. The effective magnetic moment is in good agreement with the theoretical one $(g\sqrt{S(S+1)} = 7.94 \ \mu_B)$. The positive sign of Θ_W is indicative of a ferromagnetic coupling between the Eu²⁺ ions in EuYCuS₃ and EuLuCuS₃, respectively. A divergence between

Figure 6. The temperature dependence of the magnetic susceptibility (χ) for EuYCuS₃ (a) and EuLuCuS₃ (b) below 10 K. The insets show the reciprocal magnetic susceptibility (χ^{-1}) below 300 K.

the ZFC and FC susceptibilities, which is due to the ferromagnetic transition, has been observed at 4.5 K for EuYCuS₃ and at 5.4 K for EuLuCuS₃.

Figures 7(a) and (b) show the field dependence of the magnetization (*M*) below and above the Curie temperature for EuYCuS₃ and EuLuCuS₃, respectively. For both compounds, the magnetization at 2 K (below the Curie temperature) increases linearly with the applied field and almost saturates at 1.5 T. The features of these *M*–*H* curves are suggestive of a soft ferromagnet with very small hysteresis. Extrapolation of the high field magnetic moment to zero field yielded a saturation moment of 6.8 $\mu_{\rm B}$ for EuYCuS₃ and 6.6 $\mu_{\rm B}$ for EuLuCuS₃. These values agree with the theoretical value of $gS = 7 \mu_{\rm B}$ for the ferromagnetic ordering of the Eu²⁺ ion which is in the ⁸S_{7/2} state. The magnetization curves at 10 K (above the Curie temperature) can be scaled by the Brillouin function $M = gSB_S(x)$ with S = 7/2 ($x = gS \mu_{\rm B}H/k_{\rm B}T^*$)

Figure 7. The field dependence of the magnetization for EuYCuS₃ (a) and EuLuCuS₃ (b). Broken lines are the results of fitting with the Brillouin function $M = gSB_S(x)$ (see the text).

modified by the effective temperature $T^* = T - \Theta_W$, which is plotted as the broken line in figure 7. The Curie–Weiss temperatures (Θ_W) are estimated to be +5.5 K for EuYCuS₃ and +6.1 K for EuLuCuS₃. These temperatures are comparable to those derived from the Curie–Weiss fitting to the χ^{-1} –*T* curve.

The specific heat (C_p) of EuYCuS₃ was measured in the temperature range from 0.4 to 300 K as shown in the inset of figure 8(a). The sharp λ -type anomaly at 4.4 K is indicative of a long range magnetic ordering which corresponds to the ferromagnetic transition observed in the χ -T and M-H curves (see figures 6, 7). The specific heat of insulating EuYCuS₃ consists of a lattice contribution (C_{lat}) and a magnetic contribution (C_{mag}). C_{lat} is represented by the usual harmonic lattice series in odd powers of temperature T:

$$C_{\rm lat} = B_3 T^3 + B_5 T^5 + B_7 T^7 + \cdots.$$
⁽²⁾

Figure 8. (a) The temperature dependence of the specific heat (C_p) below 15 K for EuYCuS₃. The inset shows the specific heat behaviour up to 300 K. (b) The temperature dependence of the magnetic specific heat (C_{mag}/T) divided by the temperature and magnetic entropy (S_{mag}) below 15 K for EuYCuS₃.

On the assumption that C_{mag} is negligible above 16 K, the constants B_3 , B_5 , B_7 were determined by fitting equation (2) to the observed specific heat data between 16 and 25 K. C_{mag} is obtained by subtracting C_{lat} from the total C_p . The temperature dependences of C_{mag}/T and the magnetic entropy calculated from $S_{\text{mag}} = \int (C_{\text{mag}}/T) \, dT$ are shown in figure 8(b). From the $S_{\text{mag}}-T$ curve, the magnetic entropy change is estimated to be ~15 J mol⁻¹ K⁻¹, and it is close to $R \ln(2S + 1) = R \ln 8$ (17.3 J mol⁻¹ K⁻¹). This result reveals that the ferromagnetic ordering of EuYCuS₃ is caused by only the Eu²⁺ ion and the eightfold degeneracy remains in the ground state of Eu²⁺, which is consistent with the results obtained through the magnetic susceptibility and magnetization measurements.

Figure 9. (a) The temperature dependence of the magnetic susceptibility (χ) for EuGdCuS₃ below 10 K. (b) The temperature dependence of the reciprocal magnetic susceptibility (χ^{-1}) for EuGdCuS₃ below 20 K. The inset shows the reciprocal magnetic susceptibility (χ^{-1}) below 300 K. A solid curve is the result of fitting with the molecular field approximation (see the text).

3.2.2. $EuGdCuS_3$. Figure 9(a) shows the temperature dependence of the magnetic susceptibilities χ below 10 K. With decreasing temperature, χ increases abruptly at 5.6 K and the ZFC susceptibility diverges from the FC susceptibility below 5.2 K. The ZFC susceptibility decreases gradually below 5.2 K and shows an abrupt drop below 3.0 K. On the other hand, the FC susceptibility still increases below 5.2 K and then decreases abruptly below 3.0 K.

The reciprocal magnetic susceptibility (χ^{-1}) versus temperature curve for EuGdCuS₃ is shown in the inset of figure 9(b). In this compound, since both the Eu²⁺ and Gd³⁺ ions have the ⁸S_{7/2} ground state without orbital momentum, the crystal electric field does not affect the magnetic susceptibility. Therefore, it is expected that the molar susceptibility can be

Figure 10. The field dependence of the magnetization for EuGdCuS₃. The broken and dotted curves represent the Brillouin function $M = gSB_S(x)$ with $\Theta_W = -1.2$ K at 10 K and with $\Theta_W = 0$ K at 1.8 K, respectively (see the text).

represented as

$$\chi = \chi (\text{Eu}^{2+}) + \chi (\text{Gd}^{3+}) + \chi_{\text{TIP}} = \frac{C}{T - \Theta_{\text{W}}} + \chi_{\text{TIP}}.$$
(3)

From the Curie–Weiss law fitting to the $\chi^{-1}-T$ curves in the temperature range between 10 and 300 K, C and Θ_W are estimated to be 15.5(3) emu K mol⁻¹ and -0.72(1) K, respectively. This Curie constant agrees with the theoretical one (15.8 emu K mol⁻¹), but the Curie–Weiss temperature is very small as compared with the magnetic anomaly temperature in the χ –*T* curve.

The field dependence of the magnetization for EuGdCuS₃ is shown in figure 10. The M-H curve at 10 K (in the paramagnetic region) can be scaled by the Brillouin function $M = 2gSB_S(x)$ with S = 7/2 and $\Theta_W = -1.2$ K (a broken line). This Curie–Weiss temperature is close to that ($\Theta_W = -0.72$ K) obtained by the Curie–Weiss fitting. Below the magnetic anomaly temperature (5.6 K), the M-H curve shows complicated behaviour. In the M-H curve at 5 K, M reaches 1.2 μ_B at 100 mT, but increases gradually above 100 mT. On the other hand, M at 1.8 K increases gently with the applied field compared with the theoretical curve $M = 2gSB_S(x)$ with $\Theta_W = 0$ K at 1.8 K (a dotted curve in figure 10). Therefore the M-H curve at 5.0 K suggests that the magnetic ordering state at 5.0 K is ferrimagnetic, while the M-H curve at 1.8 K is indicative of antiferromagnetic couplings between the Gd³⁺ and Eu²⁺ moments.

The temperature dependences of C_{mag}/T and S_{mag} for EuGdCuS₃ were derived in a similar manner to those for EuYCuS₃, and they are shown in figure 11. The λ -type anomaly at 5.1 K in the $C_{\text{mag}}/T-T$ curve suggests that a long range magnetic ordering occurs at this temperature. Below 5.1 K, the features of C_{mag}/T for EuGdCuS₃, which has a broad maximum at around 1.5 K, are different from those for EuYCuS₃. The change of S_{mag} approaches $\sim 2R \ln 8$ (34.6 J mol⁻¹ K⁻¹) at 15 K, which indicates that the Eu²⁺ and Gd³⁺ ions have the same ${}^{8}S_{7/2}$ ground state and contribute to the magnetic ordering of EuGdCuS₃.

Figure 11. The temperature dependence of the magnetic specific heat (C_{mag}/T) divided by the temperature and magnetic entropy (S_{mag}) below 15 K for EuGdCuS₃.

For EuRCuS₃ (R = Y, Eu, Lu) containing non-magnetic R ions, the ferromagnetic ordering of the Eu²⁺ moments occurs at 3.4–4.4 K, while the EuRCuS₄ (R = Tb–Yb) compounds containing magnetic R ions show ferrimagnetic behaviour as will be described later. Thus, it is considered that each of the Eu²⁺ and Gd³⁺ moments (S = 7/2) forms a ferromagnetic net and that the antiferromagnetic interaction operates between the Eu²⁺ and Gd³⁺ ferromagnetic nets. The difference in ordered magnetic moment between the Eu²⁺ and Gd³⁺ ferromagnetic nets causes the divergence between the ZFC and FC susceptibilities below 5.2 K (figure 9(a)) and the ferrimagnetic M-H curve at 5 K (figure 10). At even lower temperatures, the ordered magnetic moments of the Eu²⁺ and Gd³⁺ ions should both approach 7 μ_B , and it is supposed that the drops of the ZFC and FC susceptibilities below 3.0 K and the M-H curve at 1.8 K are due to the antiferromagnetic coupling between the Eu²⁺ and Gd³⁺ ferromagnetic nets with the same ordered moments. In view of these behaviours, EuGdCuS₃ is classified as an L-type ferrimagnet [8].

Around the transition temperature, the χ -*T* and *M*-*H* curves of EuGdCuS₃ show ferrimagnetic behaviour. According to molecular field theory, the temperature dependence of the reciprocal magnetic susceptibility for ferrimagnets is represented by [8]

$$\frac{1}{\chi - \chi_{\text{TIP}}} = \frac{T}{C} + \frac{1}{\chi_0} - \frac{\sigma}{T - \Theta},\tag{4}$$

where χ_0 , Θ , σ are parameters related to the molecular field coefficients. The Curie temperature $T_{\rm C} (=(\Theta - C/\chi_0 + \sqrt{(\Theta - C/\chi_0)^2 + 4C(\Theta/\chi_0 + \sigma)})/2)$ and the Curie constant $C (=C_{\rm Gd} + C_{\rm Eu})$ of EuGdCuS₃ are determined as 5.37(7) K and 15.51(1) emu K mol⁻¹, respectively, by fitting equation (4) to the $\chi^{-1}-T$ curve as shown in figure 9(b). This value of $T_{\rm C}$ agrees with the λ -type anomaly temperature (5.1 K) in the $C_{\rm mag}-T$ curve.

3.2.3. $EuRCuS_3$ (R = Tb, Dy, Tm). For the EuRCuS_3 compounds with R = Tb, Dy, and Tm, the χ -T curves and M-H curves are similar. Figure 12(a) shows the temperature

Figure 12. (a) The temperature dependence of the magnetic susceptibility (χ) for EuTbCuS₃ below 10 K. (b) The temperature dependence of the reciprocal magnetic susceptibility (χ^{-1}) for EuTbCuS₃ below 20 K. A solid curve is the result of fitting with the molecular field approximation. (c) The field dependence of the magnetization for EuTbCuS₃.

Crystal structures and magnetic properties of EuRCuS3

Table 3. Magnetic properties of EuRCuS ₃ .							
R	$T_{\rm C}~({\rm K})$	$C(\text{obs}) \text{ (emu K mol}^{-1})$	$C(\text{calc}) \text{ (emu K mol}^{-1})$				
Gd	5.4	15.51(1)	15.77				
Tb	4.9	18.34(1)	19.70				
Dy	4.6	21.53(1)	22.07				
Tm	4.8	14.44(1)	15.03				

dependence of the magnetic susceptibilities of EuTbCuS₃. A divergence between the ZFC and FC susceptibilities, which is due to a ferrimagnetic ordering, is observed at 5.4 K for $EuTbCuS_3$. Other $EuRCuS_3$ (R = Dy, Tm) compounds also show a ferrimagnetic transition at 5.3 K for EuDyCuS₃ and at 5.4 K for EuTmCuS₃. $T_{\rm C}$ and C (= $C_{\rm R} + C_{\rm Eu}$) for EuRCuS₃ (R = Tb, Dy, Tm) were determined by fitting equation (4) to the $\chi^{-1}-T$ curve. The fitting result for EuTbCuS₃ is shown in figure 12(b), and the parameters fitted for EuRCuS₃ (R = Tb, Dy, Tm) are listed in table 3 together with the data for EuGdCuS₃. The value of C is smaller than the sum of the Curie constants for free R^{3+} (⁷F₆ for Tb³⁺, ⁶H_{15/2} for Dy³⁺, ³H₆ for Tm^{3+}) and Eu^{2+} (${}^{8}S_{7/2}$) ions, which indicates that the crystal electric field affects the R³⁺ ions. Figure 12(c) shows the field dependence of the magnetization for EuTbCuS₃. The M-H curves at 3 and 5 K demonstrate ferrimagnetic behaviour, while that at 10 K shows paramagnetic behaviour. The value of magnetization $\sim 11 \ \mu_{\rm B}$ at 5 T in the *M*-H curve at 3 K is considerably smaller than the theoretical moment for the free Eu^{2+} and Tb^{3+} ions $(gS + g_I J = (7 + 9) \mu_B = 16 \mu_B)$. Because the crystal electric field does not affect the Eu²⁺ ions, this large reduction of the magnetic moment should be mainly attributable to the crystal field effect on the Tb³⁺ ions. Assuming that the magnetic moment of the Tb³⁺ ground state is equal to $\sim 4 \mu_{\rm B}$ and that these Tb³⁺ moments form a ferromagnetic net, the ferrimagnetic state with the antiferromagnetic coupling of the Tb³⁺ and Eu²⁺ ferromagnetic nets is expected to have the remanent magnetization of $\sim 3 \mu_{\rm B}$ and the magnetization should saturate, reaching $\sim 11 \ \mu_{\rm B}$ with increasing applied magnetic field. The *M*-*H* curve at 3 K indicates that the saturation moment of the field-induced ferrimagnetic state can be estimated to be 2.9 $\mu_{\rm B}$ by extrapolation of the magnetic moment between 0.8 and 1.5 T to zero field (a broken curve in figure 12(c)). This result supports the assumption that the Tb³⁺ ground state has the magnetic moment of $\sim 4 \mu_{\rm B}$ and forms a ferromagnetic net.

3.2.4. EuYbCuS₃. Figures 13(a) and (b) show the χ -*T* and *M*-*H* curves of EuYbCuS₃, respectively. The behaviour is seen to be ferromagnetic at a glance. A divergence between the ZFC and FC susceptibilities is observed at 5.5 K. From the Curie–Weiss fitting using equation (1) to the χ -*T* curve above 100 K, the Curie constant is estimated to be 8.80 emu K mol⁻¹. This value is considerably smaller than the theoretical one (10.41 emu K mol⁻¹). It is considered that Yb³⁺ is strongly affected by the crystal field. The ground ²F_{7/2} state of the Yb³⁺ ions should be split into four Kramers doublets under the D_{2h} point symmetry in EuYbCuS₃ and the low lying Kramers doublet of the Yb³⁺ moments should show magnetic ordering. It is suggested that the ferromagnetic behaviour of the ⁸S_{7/2} moment of Eu²⁺ conceals the magnetic ordering of the small Yb³⁺ magnetic moment.

4. Summary

Novel quaternary rare-earth copper sulfides $EuRCuS_3$ (R = Y, Gd–Lu) have been synthesized. These compounds crystallize in the Eu_2CuS_3 -type structure for R = Y, Gd–Dy and in

Figure 13. (a) The temperature dependence of the magnetic susceptibility (χ) for EuYbCuS₃ below 10 K. (b) The field dependence of the magnetization for EuYbCuS₃.

the KZrCuS₃-type structure for R = Tm-Lu. Both EuYCuS₃ and EuLuCuS₃ show a ferromagnetic ordering of the Eu²⁺ ion at around 5.0 K. The other EuRCuS₃ compounds containing magnetic R ions show a ferrimagnetic transition at around 5.0 K.

References

- [1] Mitchell K and Ibers J A 2002 Chem. Rev. 102 1929
- [2] Lemoine P, Carre D and Guittard M 1986 Acta Crystallogr. C 42 390
- [3] Furuuchi F, Wakeshima M and Hinatsu Y 2004 J. Solid State Chem. at press
- [4] Izumi F and Ikeda T 2000 Mater. Sci. Forum **321–324** 198–203
- [5] Christuk A E, Wu P and Ibers J A 1994 J. Solid State Chem. 110 330
- [6] Wu P, Christuk A E and Ibers J A 1994 J. Solid State Chem. 110 337
- [7] Yang Y and Ibers J A 1999 J. Solid State Chem. 147 366
- [8] Néel L 1948 Ann. Phys. 3 137